12月8日 | 杨灿:Integration of Deep Neural Networks and Probabilistic Models for Extracting Single-Cell Information from High-Resolution Spatial Transcriptomics

发布者:孙瑞发布时间:2025-12-03浏览次数:10

时   间:2025年12月8日(周一)10:00 -11:00

报告人:杨灿香港科技大学教授

地   点:普陀校区理科大楼A1514

主持人:史兴杰   华东师范大学副教授

摘    要:

Recent advancements in spatial transcriptomics (ST) technologies have enhanced the ability to investigate organ and tissue architecture at subcellular resolution. Sequencing-based methods achieve spatial resolutions of 0.5 to 2 µm, while imaging techniques can reach 0.1 to 0.2 µm. Extracting single-cell information from these high-resolution measurements is essential but challenging due to imperfect subcellular data. Sequencing technologies often encounter low transcriptional abundance per spot, and imaging methods typically measure only a few hundred genes, limiting accurate cell boundary delineation and type annotation. Additionally, the integration of multimodal information, such as staining images and transcript measurements, remains underexplored, and substantial computational resources are needed to analyze millions of cells. To address these challenges, we propose CellART, a unified framework for extracting single-cell information from high-resolution ST data. By integrating deep neural networks and probabilistic models, CellART effectively learns high-resolution representations from multimodal data, providing accurate cell segmentation and cell type annotations. The framework is scalable, capable of handling millions of cells efficiently. We further extend CellART to characterize cell niches in both condition-agnostic and disease-relevant studies, unlocking the potential of ST technologies to enhance our understanding of biological processes and disease mechanisms.


报告人简介:

杨灿,现为香港科技大学数学系教授,他分别于2003年和2006年在浙江大学获得工学学士学位和工学硕士学位,并于2011年在香港科技大学获得电子计算机工程博士学位。他是耶鲁大学的博士后(2011-2012)和副研究员(2012-2014)。他的研究领域专注于统计与计算方法的研发及其在大规模数据分析中的应用。他的研究论文发表在高影响力的期刊上,Nature Computational Science, Nature Communications, Annals of Statistics, Proceedings of the National Academy of Sciences, IEEE Transactions on Pattern Analysis and Machine Intelligence, 以及 The American Journal of Human Genetics。基于杨灿教授对数据科学的贡献,他获得了香港青年科学家一等奖(2012),香港数学会杰出青年学者(2023)和香港科技大学理学院杰出科研奖(2023)。杨灿教授还得到香港政府创新技术基金的支持与产业界建立紧密合作。